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FEATURES OF ELASTIC WAVE PROPAGATION IN A SYSTEM PLATE -LAYER-HALF-SPACE 

T. K. Kadyrov and M. V. Stepanenko UDC 539.3 

When solving questions for protecting supply-line engineering structures from the action 
of moving loads, information about the features of harmonic wave propagation in systems 
simulating real objects with their interaction with substructures and foundations taken into 
account can turn out to be useful. One of the models permitting clarification of the feature 
of dynamic interaction of structural elements is the system plate-layer-half-space. This 
latter (sometimes called a foundation) is considered rigid or deformable. Approximate meth- 
ods for taking account of the pliability of the foundation in static problems are presented 
in [i]. 

Investigated below are the waveguide properties of the elastic systems plate-half-space, 
plate-layer, and plate-layer-half-space. Sliding contact is realized between the plate 
and the layer (half-space), while the layer and half-space are rigidly connected. Two founda- 
tion models are examined, exact (within the framework of elasticity theory) and approximation, 
the model of an elastic medium with one vertical displacement. Apparently, Rakhmatulin [2] 
first used this model in a problem not related to questions of structure interaction with a 
medium. Approximate equations are used in [3] to analyze the static and a number of dynamic 
problems. The dynamics of piecewise-homogeneous media was investigated in [4-6] by using 
this model and similar modifications. Information about the dispersion of harmonic waves in 
composite systems, obtained in [7-9], has a direct application to problems of geophysics, 
acoustodiagnostics, but leaves aside questions of strength and carrying capacity of the struc- 
tures subjected to the action of waves being propagated in the surrounding medium. This is 
explained by the fact that the correspondence between the nature of free wave propagation and 
nonstationary processes under moving loads was not clarified. The fundamental merit in 
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establishing such a connection is due to Slepyan, who analyzed the formation of quasista- 
tionary and resonance modes and related their parameters to dispersion parameters in sepa- 
rated spectrum domains [i0]. Resonance phenomena in plates and shells surrounded by an 
acoustic medium are investigated in [10-13], and in a plane layer making contact with an 
elastic medium in [14, 15]. The results presented below make possible a qualitative analy- 
sis of resonance wave formation in structurally inhomogeneous systems without solution of 
the nonstationary problem. 

Let us consider deformation of the media in the system. We introduce the notation: 
x is the longitudinal coordinate, y is normal, u and v are longitudinal and normal displace- 
ments, ax, ay, Oxy are stresses. We denote the plate, layer, and half-space parameters by 
the subscripts 0, i, 2, respectively. 

The equation of dynamical plate bending on the basis of the classical model has the 
form 

= ~ - -  x c 0 ~ 0 , = = ,  (I) 

where P0, h0, c0= 1 / E 0 / p 0 ( t - ~ )  are the  d e n s i t y ,  t h i c k n e s s ,  and speed of  sound in  the  p l a t e ,  
x~= h~/12, and R is the reaction of the foundation 

R (x, t) = o~y-(1)(x, o, t). (2)  

We write the equations of layer and half-space motion in potentials 

c~hh~ = ~ ,  c ~ A T ~  = ~ (k = 1, 2) ( 3 )  

(Clk and C2k are the expansion and shear wave velocities). 

The displacements u k and v k and the stresses of interest to us are expressed in terms of 
the potential in a known manner: 

t r uk ~h,~+ ~' ~' = k.,,~ vk = ~h.u-- k.=. (4) 

2 # # - ( h ) = p h C l ~ [ q ~ k , v ~ + ( t - - c 2 / c ' ~  9 ' ' ~," I .  ,,~, =~/ x~J c k =  . (c2~/c,~) ~ , ~ j ,  ( 5 )  

The boundary conditions for (3) are the sliding contact conditions for the plate and the 
layer 

(~(1) " 0;  ( 7 ) y = 0 :  Vo ~Vz, x v  - ~  

r i g i d  c o n t a c t  of  t h e  l a y e r  and t h e  h a l f - s p a c e  

_(1) (,) _(1) = o(2). ( 8 )  
Y---hi: ul = us, vz ~- v2, uw = ~w, u x v  x u ,  

and damping a t  i n f i n i t y  

~2 = ~ = 0 (Y-+ oo). (9 )  

Equations (1)-(9) c o n t a i n  t h e  f o r m u l a t i o n  of  t h e  problem.  We r e p r e s e n t  t h e  d e s i r e d  f u n c t i o n s  
in  t h e  form of  s i n u s o i d a l  waves t r a v e l i n g  a long  t h e  x a x i s  [~exp ( i q ( x  - c t ) ) ,  where c i s  t he  
phase velocity, q = 2~/l, I is the wavelength]. After substitution into (3) and satisfaction 
of the boundary conditions (I), (2), (7)-(9) with the dependences (4)-(6) taken into account, 
we have a dispersion equation as a result of equating the determinant of the system of six 
linear algebraic equations to zero. Because of awkwardness, we represent writing this equa- 
tion schematically by indicating the dependent on the problem parameters: 

L(c, q; ho, P0, Co, hi, Pl, c11, c21, P~, c12, c2s) = 0. (10)  

Th is  i s  a t r a n s c e n d e n t a l  e q u a t i o n  and the  e x p l i c i t  dependence o f  i n t e r e s t  t o  us c = c ( q , . . . )  
i s  no t  o b t a i n e d  s u c c e s s f u l l y  f rom i t .  I n  t he  case o f  long (q -~ 0) and s h o r t  (q -~ oo) waves 
(10)  can be s i m p l i f i e d  s u b s t a n t i a l l y  and t h e  a s y m p t o t i c  o f  t he  v e l o c i t i e s  can be found.  A 
numerical analysis of the dispersion curves on an electronic computer causes no difficulties 
in principle. Represented below are results of such computations and the waveguide proper- 
ties of the system plate-half-space, plate-layer-half-space, and plate-layer are analyzed 
as a function of the parameters. It is assumed that 90 = ~i = ~2 = 0.25 in all the computa- 
tion modifications. 

Plate -Half-Space 

The dispersion equation corresponding to (i0) under the condition that the layer and 
half-space parameters are identical (clz = ct2 = ci, c2z = c22 = c 2 and Pl = P2 = P) has the 
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following form (c z, p, and h 0 are units of measurement): 

poq ] / ~ Z ' c ' ~  (c 2 - -  • c 2 + c~LR = O, LR = (2  - -  c2/c~) 2 - - 4  V ~ - - c ~ V ? - -  c2/c~ ( 1 1 )  

(L R = 0 is the Rayleigh equation). 

For q = 0 (infinitely long waves) c = c R is the Rayleigh wave velocity for a free half- 
space, i.e,, the presence of a plate of finite stiffness and mass does not influence the 
velocity of the long wave being propagated along the surface, which is a Rayleigh wave and 
"does not notice" the plate. In the shortwave spectrum (q + ~) we find from (ii) the c ~ 
c0q/Ir , which is a dependence governing the dispersion of bending waves in the plate in the 
absence of a foundation. This result is associated with the fact that the stiffness of the 
foundation surface layer with a thickness on the order of the wavelength tends to zero as q 
grows (while the stiffness of the plate is constant), and the influence of the foundation 
vanishes as q § ~. However, we note that the classical model of dynamical plate bending is 
not acceptable for a description of the shortwave (~ ~ h 0) spectrum and the space q + ~ is 
later not considered specially. 

We obtain the next longwave approximation after q = 0 from (ii) under the condition that 
q is small but finite LR + poq(c/c~)4] ~i-c2 + O(q 2) = O~ from which we have the explicit expres- 
sion 

c = c R ( l - - a p o q + O ( q ~ ) ) ,  a = V i - - c ~ ( c R / 2 c ~ ) 2 I ( i  +c~--2c~)'[(l--c~)(i--c2/c2~l-'/2~ m 2Jj - - 2  +CR/C~ ~-~} . ( 1 2 )  

As analysis showed, ~ > 0 for 0 ~v~ 0.5, consequently the phase velocity of the long waves 
decreases linearly from its limit value c R as P0q grows. The plate stiffness does not exert 
influence on the long wave dispersion (= is independent of the plate parameters), the asymp- 
totic (12) agrees with that in a system where the plate is replaced by an inertial layer 
of zero stiffness (c o = 0). 

The continuous lines in Fig. la-c (90 = 0.5, i, 2; respectively) are the phase curves 
c = c(q,...) computed for different c o [in the case c o = 0 the asymptotic for P0q + ~ has 
the form c ~ (p0q)-Z/4], the dashes are the asymptotic (12), and the dash -dots are the short- 
wave asymptotic c = c0q//~. As P0 and c o diminish, the domain of the longwave spectrum 
broadens, where the dispersion is acceptably described by the approximation (12). As q in- 
creases (for constant P0 and c o ) the role of the plate stiffness in the formation of the dis- 
persion of the medium-wave spectrum is magnified, the phase curve smoothes out, reaches a 
minimum at the point q,, c, (the points are denoted by crosses on the curves) and later grows 
monotonically (the more rapidly, the greater the P0 and c o ) until intersection with c = c 2 
(the ordinates of the real phase velocities are bounded by this line since the dispersion 
equation has only complex roots for c > c2). The presence of minimum points indicates the 
existence of critical velocities of load motion (equal to c,) for this system, that excite 
resonance bending waves with frequency of the mode q, in the medium-wave part of the spectrum. 

The smaller the variability of the phase curve in the neighborhood of q, (which corre- 
sponds to growth of the exponent n in the approximating dependence c = (q - q,)n say, n 
even), the broader the wavelength spectrum forming the resonance perturbations, the more 
intensive their growth with time (asymptotically proportional to t z-I/n [I0]) and the more 
rapidly is the asymptotic reached. Consequently, resonance modes in the medium-wave spec- 
trum are more dangerous in the case of a relatively light and pliable plate. On the other 
hand, as c o grows the value c, approaches c R while q, shifts into the longwave domain. This 
indicates the possibiltiy of superposition of surface (c = CR, q = 0) and bending (c = c,, 
q = q,) growing waves and thereby substantial magnification of the resonance perturbations 
during motion of a normal load along the surface at a velocity that is incident in the inter- 
val (c,, CR). The question of which of these two mechanisms for the formation of perturba- 
tions that grow with time will predominate in each specific case can be solved during an 
analysis of nonstationary problems on the basis of numerical computations (e.g., by the 
scheme utilized in [15]). 

As mentioned above, a simplified foundation model with one displacement [2, 3] was 
also considered simultaneously with the model (3), and to which one equation of motion for 
v corresponds: 

�9 " 2 ~ 2 n 2 t v = clv ,~ + c2v.x~, ~ = pclv.~. ( 1 3 )  

Utilization of (13) in conjunction with (i) and condition (7) results in the dispersion 
equation 
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- -  x2c~q ~) = O. (14)  

Exactly as in the exact model, waves traveling at the velocity c > c 2 are radiated into the 
medium, however, in contrast to (12) the asymptotic values of the long wave velocities are 
different here 

c=c= ( q = 0 ) ,  c - - c = ( i - - p 0 d q  2) ( l q l < e ) .  (15)  

As i s  s e e n  f r o m  ( 1 5 ) ,  t h e  s u r f a c e  wave d o e s  n o t  move a t  t h e  R a y l e i g h  b u t  a t  t h e  s h e a r  
v e l o c i t y ,  a d e c r e a s e  in  t h e  l o n g  wave v e l o c i t y  w i t h  t h e  g r o w t h  o f  P0 h a s  t h e  same ( l i n e a r )  
n a t u r e ,  h o w e v e r ,  i t  i s  w e a k e r  as  q i n c r e a s e s  t h a n  f o r  t h e  e x a c t  mode l  ( n o t  a l i n e a r  b u t  a 
p a r a b o l i c  d e p e n d e n c e ) .  T h e s e  f e a t u r e s  g o v e r n  t h e  d i f f e r e n c e s  b e t w e e n  t h e  two m o d e l s  u n d e r  
i n v e s t i g a t i o n  in  t h e  l ongwave  s p e c t r u m .  P r e s e n t e d  in  F i g .  2a i s  a c o m p a r i s o n  o f  t h e  p h a s e  
c u r v e s  computed  f o r  c o = 1, P0 = 2 . 5 ;  t h e  d a s h e d  l i n e s  a r e  t h e  a s y m p t o t i c s  (12)  and ( 1 5 ) ;  t h e  
d a s h - d o t  l i n e  i s  t h e  c u r v e  computed  a c c o r d i n g  t o  t h e  a p p r o x i m a t e  mode l  ( 1 3 ) a n d  c o r r e s p o n d -  
i ng  t o  ( 1 4 ) ,  where  c= in  t h e s e  e q u a t i o n s  i s  r e p l a c e d  by c R (c  R = 0 . 9 2 c  2 f o r  v = 0 . 2 5 ) .  I t  
i s  s e e n  t h a t  s u c h  a r e p l a c e m e n t  p e r m i t s  n o t i c e a b l e  c l o s u r e  b e t w e e n  t h e  c u r v e s ,  and r e s p e c -  
t i v e l y ,  be tween  t h e  c o o r d i n a t e s  o f  t h e  s i n g u l a r  p o i n t s .  R e p r e s e n t e d  in  F i g .  2 b i s  t h e  d e p e n -  
dence  o f  c ,  on P0 and Co, t h e  c o n t i n u o u s  c u r v e  i s  t h e  e x a c t  m o d e l ,  w h i l e  t h e  d a s h e s  a r e  t h e  
a p p r o x i m a t e  mode l  w i t h  c 2 r e p l a c e d  by c R. L e t  us  n o t e  t h e  f o l l o w i n g  r e l a t i v e  t o  t h e  m o d e l s  
b e i n g  u s e d :  t h e  d i f f e r e n c e  in  t h e  c u r v e s  in  t h e  n e i g h b o r h o o d  o f  t h e  p o i n t  q = 0 s h o u l d  r e s u l t  
i n  a d i f f e r e n t  d e g r e e  o f  s u r f a c e  r e s o n a n c e  wave g r o w t h  [10 ,  1 5 ] ,  whose  a m p l i t u d e s  w i l l  be  
e x a g g e r a t e d  i n  t h e  a p p r o x i m a t e  m o d e l ,  t h e  b e h a v i o r  o f  t h e  c u r v e s  in  t h e  n e i g h b o r h o o d  o f  t h e  
minimum i s  q u a l i t a t i v e l y  t h e  same,  t h e  v a l u e s  o f  c ,  do n o t  d i f f e r  s u b s t a n t i a l l y ,  and h e n c e  
t h e  d e s c r i p t i o n  o f  t h e  r e s o n a n c e  b e n d i n g  waves  in  t h e  p l a t e  s h o u l d  n o t  h a v e  s u b s t a n t i a l  d i s -  
t i n c t i o n s .  

Plate-Layer -Half-Space 

In contrast to the preceding case, here an infinite number of roots of the dispersion 
equation exists, analogs of the modes of the free waves being propagated in a plane layer of 
finite thickness [I0]. The first (lower) mode on a finite segment of the spectrum has real 
roots, the higher modes can be real or complex depending on the relationships between the 
system parameters. In the longwave spectrum (q + O) the asymptotic (i0) takes the following 
form (cz2 , P2, and h0 are units of measurement): 

c=2LR + q {po c~ ] / i  - -  c ~ + pzhz [ ( t +  ~1)  (~12 + ~2,)  4 (~1~1~ + ~1~22)]}, ~j~ = V ~ - -  c2/c~k (], k = l ,  2). (16)  

The first component in the braces governs the influence of the plate (on the dispersion of 
long waves), the second, of the layer. The velocities of the asymptoticshave the same struc- 
ture as in (12), however, the coefficient = depends not on the layer parameters, and in con- 
trast to (12) where ~ > O, can change sign. 
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For a relatively stiff and heavy layer with c21~c22 (or c11~c12, since 91 = v 2) the value 
of a is negative and the velocities in the neighborhood of q~8 exceed the asymptotic value 
at the point q = 0 that equals CR=. When the sign of a changes the component in the braces 
equals zero, the dependence c(q) in the neighborhood of q = 0 here becomes parabolic. This 
case is most favorable for the intensive development of surface resonance waves since the 
dispersion of the longwave spectrum is manifest substantially more weakly than for ~ ~ 0 
(analogous deductions are made in [7] for the layer-half-space system). For a < 0 there 
are two singular points in the medium-wave part of the spectrum for the first mode (maximum 
and minimum), and one (minimum) for =j~0. 

Figure 3 shows phase curves computed for different values of the problem parameters: a) 
c22 = 0.55, Pl = 0.4, P2 = 0.2, h I = i0; b) c21 = 0.95, Pl = 0.4, c22 = 0.55, P2 = 0.2; c) 
c21 = 1.41, Pl = 0.75, P2 = I, h I = 5; d) c21 = 0.55, Pl = 0.4, c22 = i, P2 = 0.5, h I = 5. 

For c21 = 0.67 and 0.95, h I = I0 and 2, the coefficient a from (12) equals zero and the 
asymptotic of the phase velocity c(q) in the neighborhood of q = 0 is parabolic while it is 
linear in the remaining cases. As is seen from Fig. 3b, as the bending stiffness of the 
layer approaches the plate stiffness (h I = I), the dispersion is analogous to that in the 
plate-half-space system. 

For a more light and pliable layer (a > 0, c21 < c22) there are two singular points in 
the medium-wave part of the spectrum, minimum and maximum, on the first mode curves. If the 
difference between c=i and c== is comparatively small (Fig. 3c), then the phase curves in the 
domain c < c~ differ slightly from those computed in the layer-half-space system anal- 

~2 
ogously, have a singular point, a minimum; however the curvature of the firt mode changes 
sign in the shorter wave domain, and still another point is detected, a maximum whose ordi- 
nate exceeds c21 negligibly. Furthermore, as q grows, a change in curvature again occurs and 
the first mode tends asymptotically to c21 from above. Existence of the maximum is asso- 
ciated with the mutual influence of the models I-IV (Fig. 3d). 

As computations showed, as the layer stiffness diminishes, singular points appear on 
the higher mode curves also. The second mode in the example represented in Fig. 3d has two 
points, a minimum and maximum, and a third, one (an inflection point with tangent parallel 
to the q axis). The presence of several singular points for different modes in a narrow 
spectrum (in this case the neighborhood of q = 2.5) indicates the possibility of superposi- 
tion of different vibrations modes with nearby wave numbers in a dangerous (for the dynamic 
strength of the system) load velocity interval (c, = 0.55-0.7). As q grows the higher nodes 
tend to c2~. 

Plate-Layer and Comparison of Models 

The roots of the dispersion equation are real in the whole spectrum in the plate-layer- 
rigid foundation system, and the number of modes is infinite. Analysis of the phase curves 
and the problem of determining the coordinates of the singular points are of practical in- 
terest since only a foundation layer of finite thickness is actually noticeably deformed. 
Consequently a natural question is the possibility of utilizing the approximate scheme for 
the dynamic computation of extended structures interacting with both structurally inhomo- 
geneous and with a homogeneous foundation. Moreover, precisely this scheme is utilized for 
computation of the wave processes by numerical methods based on discretization of the spatial 
coordinates since the dimensions of the mesh domain are constrained by the volume of machine 
storage. 

Curves 1-3 in Fig. 4a are computed for Pl = i, 0.75, 1.2 and c12 = 0.58, 0.84, 1.05, 
respectively. Exactly as in the preceding case for the light and pliable layer (Fig. 3cand d), 
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two singular points exist in the medium-wave part of the spectrum, where the c, of the max- 
imum exceeds the velocity c21 (their ordinates are distinguishable in the scale of the graph), 
which is an asymptotic of the short (q + ~) waves. In the long wave domain the behavior of 

the curves is qualitatively different, here r (/ = enV pff(P0h0hl) is the frequency of ver- 
tical vibrations of an inertial layer with the mass of a plate on a Winkler foundation with 
stiffness of the layer). The group velocities as q + 0 tend to zero, i.e., in practice long 
waves are not propagated. This is the main distinction in the behavior of the wave pattern 
in the systems being compared. 

Separation of the spectrum in which quantitative correspondence of the phase curves is 
observed is of interest. The solid line in Fig. 4b is the phase curve of the first mode for 
the plate-layer-half-space system with parameters governing a sufficiently stiff and heavy 
foundation (h I = 5, Pl = 1/3, c~l = 0.95, P2 = 2, c22 = 4), the dash-dot is for the system 
plate-half-space in which the half-space parameters agree with:the layer parameters, and 
the dashes are for a plate-layer (here the half-space is considered stiff). The difference 
from the model with a deformable foundation is observed in this last case only in the domain 
of very long waves (q < qz = 0.25:which corresponds to I ~ 25 h0). In the medium-wave part 
of the spectrum (ql E q ~ q2) including the singular point of the minimum, the plate-layer 
model can be utilized, which permits description of bending resonance waves in the case when 
the velocity of the moving load is less than the Rayleigh wave velocity for the layer. 
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ANALYSIS OF SPALL FRACTURE IN SPECIMENS CONTAINING POROUS SPACERS 

N. N. Belov, V. A. Gridneva, 
I. I. Korneeva, and V. G. Simonenko 

UDC 539.375 

Spall fracture can occur in metallic specimens under explosive and impact loading. It 
can be diminished or prevented entirely by using spacers of porous materials since they pos- 
sess high energy absorption characteristics. 

On the basis of numerical methods of the mechanics of a continuous medium, the influence 
of porous spacers on the spall fracture in cylindrical specimens subjected to explosive and 
impact loading is investigated in this paper. 

I. The system of equations describing the behavior of a porous material in a two-dimen- 
sional axisymmetric formulationwithin the framework of the model of an elastic-plastic body 
has the form 

pv = 8~18z + O~jOz + s j r~  pu = 8~zlaz 

§ O~/Or + (2s~ + ~)/r, V/V = Ov/~z + OuTOr -4- u/r~ 

= - p V  + v [ s ~  + s~, + s~e,,' (~ + ~)~1~ (1.1) 

2~e~ D D 

2~er O �9 D 

Here and below r, z are coordinates, u, v are velocity vector components along the r, z axes, 
Or, a z are stress tensor components, p is the pressure, s r, s t, Srz, s~ = ~(s r + s z) are 
stress deviator tensor components, E is the internal energy, er, e z, erz, % are strain rate 
deviator tensor components, V = P00/P is the relative volume, P00 = P0m/a0 is the initial 
density of the porous material, P0m is the initial density of the host material under normal 
conditions, a = pm/p is the porosity, a0 is the initial porosity, p is the density, g = ~0m • 

6Kom ~ 12~0m ( i - -L )  i 9K--K0~+8-~0 ~ ) i s  t he  shea r  modulus [1 ] ,  '0m, K0m a r e ,  r e s p e c t i v e l y ,  t he  shea r  modulus 

and t h e  m u l t i l a t e r a l  volume compress ion ,  r0m i s  t he  q r ~ e i s e n  c o e f f i c i e n t ,  Som i s  a m a t e r i a l  
c o n s t a n t ,  Ydm, Y0m a r e  t he  dynamic and s t a t i c  y i e l d  p o i n t s ,  ~ = (~ - 1 ) / a  i s  t h e  r e l a t i v e  
pore  volume, D/Dt i s  t h e  symbol o f  t he  Jab_mann d e r i v a t i v e ;  a l l  q u a n t i t i e s  w i t h o u t  t he  sub- 
s c r i p t  m r e f e r  to  t he  porous  m a t e r i a l .  

The pa r a me t e r  ~ in  ( 1 . 2 )  i s  de t e rmined  by us ing  t he  Mises f low c o n d i t i o n  f o r  a porous  
m a t e r i a l  in  t he  form 

s~ + s~ + s~ + s~s~ = -~ 

The s p e c i f i c  e x p r e s s i o n  f o r  ~ i s  no t  p r e s e n t e d  s i n c e  in  t he  numer i ca l  method proposed  f o r  t he  
s o l u t i o n  o f  t he  problem [2 ] ,  a p r o c e d u r e  i s  used t h a t  r educes  t he  s t r e s s  to  a f low c i r c l e ,  
which i s  e q u i v a l e n t  t o  t he  comple te  r e l a t i o n s h i p s  ( 1 . 2 ) .  

The k i n e t i c  e q u a t i o n  d e s c r i b i n g  t h e  compress ion  o f  a porous  m a t e r i a l  can be o b t a i n e d  
from the  s o l u t i o n  o f  t he  e q u i l i b r i u m  problem f o r  a s p h e r i c a l  pore  s u b j e c t e d  to  an a p p l i e d  
pressure [3] 
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